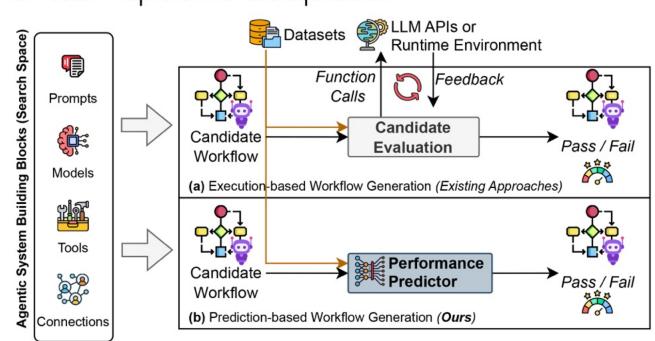


Agentic Predictor

Performance Prediction for Agentic Workflows via Multi-View Encoding

Patara Trirat¹ Wonyong Jeong¹ Sung Ju Hwang¹²



International Conference

Motivation

- LLM-powered agentic systems require complex workflow design.
- Current optimization methods rely on costly execution-based evaluations.
 - Vast configuration space (prompts, agents, tools, etc.)
 - High cost of runtime evaluations for workflow selection
 - Need for task-specific adaptation

Research Question

Can we predict performance without full executions?

📌 Goal

Enable efficient agentic workflow search via learned prediction models.

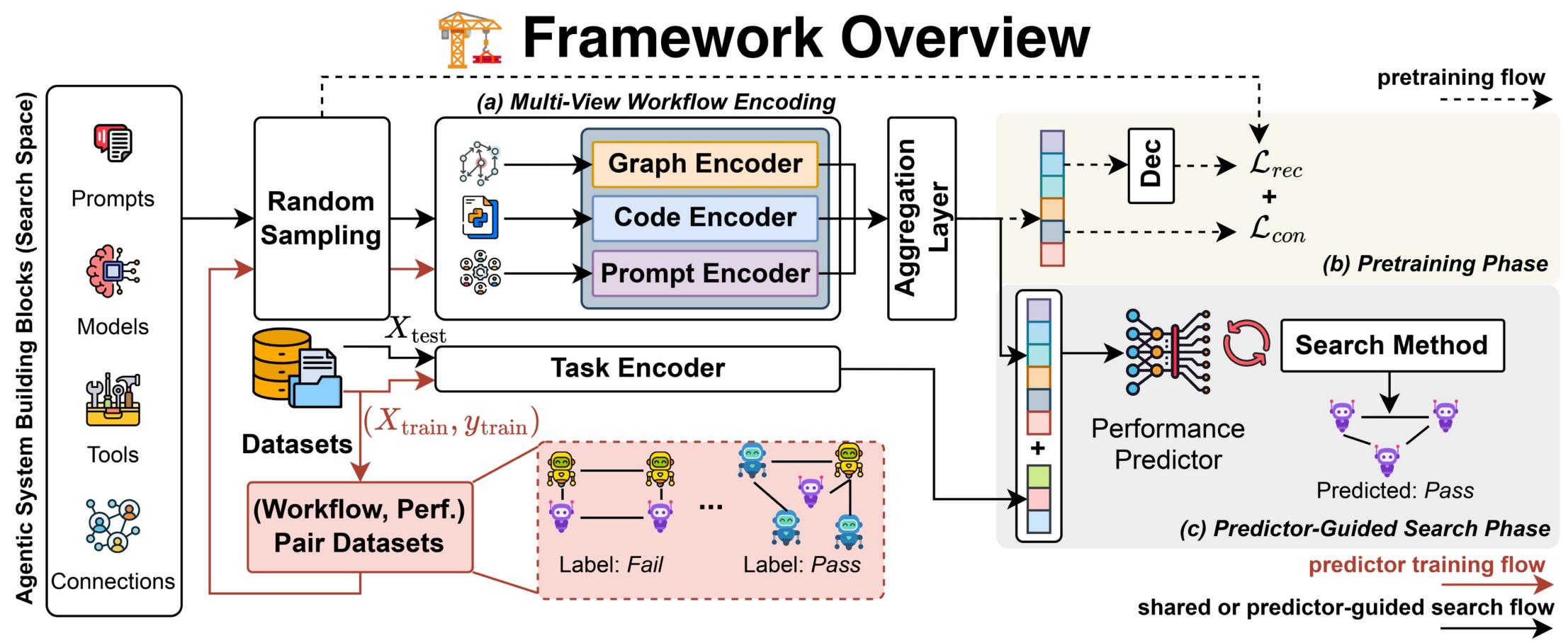
Our Contribution

We propose **Agentic Predictor**, a lightweight, predictive framework to estimate the success of agentic workflows using **multi-view representation** learning and unsupervised pretraining.

Key Features:

• Multi-View Encoding:

Captures workflow heterogeneity from:


- Graph structure (agent interaction)
- Code semantics (logic & tool use)
- Prompt embeddings (roles & behaviors)

Cross-Domain Unsupervised Pretraining

> Trains encoder on unlabeled workflows from various domains.

Lightweight Performance Predictor

> Guides search efficiently using minimal labeled data.

Experimental Results

Table 3. Performance comparison between Agentic Predictor and baseline methods. The best and second-best results are highlighted in **bold** and <u>underlined</u>, respectively.

Domain	Code Ge	eneration	Math Problem		Reasoning Task		Average	
Model	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
MLP	78.02±0.59	73.94±1.35	73.73±0.31	69.64±0.29	78.45±0.08	88.48±0.63	76.73±0.33	77.35±0.76
GCN	84.35±0.34	72.73±3.18	76.19±0.42	66.52±1.66	87.12±0.14	91.82±0.46	82.55±0.30	77.02±1.77
GAT	84.49±0.56	76.46±0.91	76.44±0.61	66.51±1.28	87.07±0.08	89.40±0.68	82.67±0.42	77.46±0.96
GCN-II	83.72±0.40	77.75±1.98	75.04±0.31	64.33±0.47	87.28±0.14	89.92±1.90	82.01±0.28	77.33±1.45
Graph Transformer	84.71±0.45	74.09±0.35	75.45±0.23	66.48±0.96	86.93±0.27	90.60±1.97	82.36±0.32	77.06±1.09
One For All	81.05±0.34	73.42±1.39	75.21±0.23	69.08±0.64	82.52±0.13	87.64±1.98	79.59±0.23	76.71±1.34
Agentic Predictor	85.62±0.47	80.08±0.46	79.56±0.25	74.08±0.47	87.96±0.02	91.47±0.44	84.38±0.25	81.88±0.46
% Improvement (up to)	9.74%	10.11%	7.91%	15.16%	12.12%	4.37%	9.97%	6.74%

Table 4. Results of ablation study on different input view variations.

View Variations		Code Generation		Math Problem		Reasoning Task		Average		
Code	Graph	Text	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility	Accuracy	Utility
\checkmark			82.04±0.51	75.66±0.66	75.70±0.14	68.52±0.91	83.19±0.56	91.51±0.61	80.31±0.40	78.56±0.73
	\checkmark		84.44±0.31	77.22±3.46	79.14±0.28	67.99±3.36	87.00±0.21	91.03±1.23	83.53±0.27	78.75±2.68
		\checkmark	79.87±0.28	70.34±0.43	76.60±0.65	68.45±1.80	68.06±0.00	71.04±0.00	74.84±0.31	69.94±0.74
\checkmark	\checkmark		83.72±0.83	73.97±0.81	75.86±0.85	70.18±1.64	86.88±0.14	86.14±4.62	82.15±0.61	76.76±2.36
\checkmark		\checkmark	82.27±0.63	77.28±1.12	76.03±0.14	66.66±4.18	54.17±0.00	53.21±0.00	70.82±0.26	65.72±1.77
	\checkmark	\checkmark	82.45±1.36	74.64±1.57	75.70±1.26	67.83±3.71	69.47±0.00	70.55±0.00	75.87±0.87	71.01±1.76
\checkmark	\checkmark	\checkmark	85.62±0.47	80.08±0.46	79.56±0.25	74.08±0.47	87.96±0.02	91.47±0.44	84.38±0.25	81.88±0.46

